Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)Unmanned aerial vehicles (UAVs) are prone to several cyber-attacks, including global positioning system (GPS) spoofing. The use of machine learning and deep learning are becoming increasingly common for UAV GPS spoofing attack detection; however, these approaches have some limitations, such as a high rate of false alarm and misdetection. We propose using capsule networks to detect and classify UAV-focused GPS spoofing attacks. This paper compares simple capsule networks, efficient capsule networks, dual attention capsule networks, and convolutional neural network in terms of accuracy, probability of detection, probability of misdetection, probability of false alarm, prediction time, training time per sample, and memory size. The results indicate that the Efficient-capsule network outperforms the other models, as demonstrated by an accuracy of 99.1%, a probability of detection of 99.9%, a probability of misdetection of 0.1%, a probability of false alarm of 0.37%, a prediction time of 0.5 seconds, a training time per sample of 0.2 seconds, and a memory size of 123 mebibytes for binary classification.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Unmanned Aerial Networks (UAVs) are prone to several cyber-attacks, including Global Positioning Spoofing attacks. For this purpose, numerous studies have been conducted to detect, classify, and mitigate these attacks, using Artificial Intelligence techniques; however, most of these studies provided techniques with low detection, high misdetection, and high bias rates. To fill this gap, in this paper, we propose three supervised deep learning techniques, namely Deep Neural Network, U Neural Network, and Long Short Term Memory. These models are evaluated in terms of Accuracy, Detection Rate, Misdetection Rate, False Alarm Rate, Training Time per Sample, Prediction Time, and Memory Size. The simulation results indicated that the U Neural Network outperforms other models with an accuracy of 98.80%, a probability of detection of 98.85%, a misdetection of 1.15%, a false alarm of 1.8%, a training time per sample of 0.22 seconds, a prediction time of 0.2 seconds, and a memory size of 199.87 MiB. In addition, these results depicted that the Long Short-Term Memory model provides the lowest performance among other models for detecting these attacks on UAVs.more » « less
-
null (Ed.)In this paper, a machine learning (ML) approach is proposed to detect and classify jamming attacks on unmanned aerial vehicles (UAVs). Four attack types are implemented using software-defined radio (SDR); namely, barrage, single-tone, successive-pulse, and protocol-aware jamming. Each type is launched against a drone that uses orthogonal frequency division multiplexing (OFDM) communication to qualitatively analyze its impacts considering jamming range, complexity, and severity. Then, an SDR is utilized in proximity to the drone and in systematic testing scenarios to record the radiometric parameters before and after each attack is launched. Signal-to-noise ratio (SNR), energy threshold, and several OFDM parameters are exploited as features and fed to six ML algorithms to explore and enable autonomous jamming detection/classification. The algorithms are quantitatively evaluated with metrics including detection and false alarm rates to evaluate the received signals and facilitate efficient decision-making for improved reception integrity and reliability. The resulting ML approach detects and classifies jamming with an accuracy of 92.2% and a false-alarm rate of 1.35%.more » « less
An official website of the United States government
